1) Show that $y = x - x^{-1}$ is a solution of the differential equation xy' + y = 2x.

Show

2) Verify that $y = \sin x \cos x - \cos x$ is a solution of the initial-value problem:

 $y' + (\tan x)y = \cos^2 x$ y(0) = -1

on the interval $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

Show

3) For what nonzero values of k does the function $y = \sin kt$ satisfy the differential equation y'' + 9y = 0? For those values of k, verify that every member of the family of functions $y = A \sin kt + B \cos kt$ is also a solution.

$k = \pm 3$	
Show	

4) For what values of r does the function $y = e^{rt}$ satisfy the differential equation y'' + y' - 6y = 0?

$$r = -3 \text{ or } 2$$

5) A population is modeled by the differential equation:

$$\frac{dP}{dt} = 1.2P \left(1 - \frac{P}{4200} \right)$$

- a) For what values of *P* is the population increasing?
- b) For what values of *P* is the population decreasing?
- c) What are the equilibrium solutions?

$$0 < P < 4200$$

 $P > 4200$
 $P = 4200$ or $P = 0$

6) A function y(t) satisfies the differential equation:

$$\frac{dy}{dt} = y^4 - 6y^3 + 5y^2$$

- a) What are the constant solutions of the equation?
- b) For what values of *y* is *y* increasing?

c) For what values of *y* is *y* decreasing?

k = 0, 1, or 5		
$y \in (-\infty, 0) \cup (0, 1) \cup (5, \infty)$		
$y \in (1,5)$		